An Isolated RS-422 / RS-485 Shield for the Automation Direct P1AM-100 Open-Source PLC

The completed RS-422 / RS-485 shield for the Automation Direct P1AM-100 open source PLC.

The completed RS-422 / RS-485 shield for the Automation Direct P1AM-100 open source PLC.

The RS-422 / RS-485 shield is an open source shield designed to add RS-422 and RS-485 communication capabilities to the ProductivityOpen family of open-source programmable logic controllers (PLC’s) from Automation Direct. It’s loosely based on the Arduino MKR RS-485 shield but updated to use an ADM2582E 3.3 V isolated RS-485 transceiver from Analog Devices. The completed shield fits inside the P1AM-PROTO prototyping enclosure.

Continue reading

Posted in Uncategorized | Comments Off on An Isolated RS-422 / RS-485 Shield for the Automation Direct P1AM-100 Open-Source PLC

Building an Add-On Module for the Automation Direct P1AM-100 Open-Source PLC

    Inside my first add-on module for the P1AM-100 open source PLC. Two optically-isolated inputs, two relay outputs, a display, and half-duplex RS-485. The enclosure and headers are included in the P1AM-PROTO prototyping module.

Inside my first add-on module for the P1AM-100 open source PLC. Two optically-isolated inputs, two relay outputs, a display, a half-duplex RS-485 transceiver, and a serial EEROM with a MAC address for the Ethernet module. The enclosure and headers are included in the P1AM-PROTO prototyping module. Not shown is the lid of the enclosure.

In January 2020, Automation Direct launched their ProductivityOpen family of open-source programmable logic controllers (PLC’s). The first controller in the series, the P1AM-100, is based on the Microchip ATSAMD21 microcontroller and programmed using the Arduino development environment. To encourage development, they launched a prototyping module alongside the controller. The prototyping module consists of a piece of perfboard, the required connectors, and a housing.

I was already familiar with Automation Direct and their PLC and pneumatic products after building my crate beast and zombie containment unit Halloween props a few years ago. I was intrigued by this new controller from a familiar company, the CPU selection, and the possibility of building my own modules that could tie in to the controller for future projects. I set out to build a couple of add-on modules but first needed to take a closer look at the controller and its available add-ons.

Continue reading

Posted in Uncategorized | Comments Off on Building an Add-On Module for the Automation Direct P1AM-100 Open-Source PLC

Fort Collins Connexion FTTH Construction – Part Four

Inside this small splice enclosure, a 24 fiber, gel-filled cable is terminated.

A 24-count, gel-filled fiber cable is terminated inside this small splice enclosure. The splice enclosure is then placed inside the underground vault to await connections to drop fibers to people’s homes.

Welcome to part four of  my blog post on the construction and installation of the Fort Collins Connexion municipal broadband fiber network. In part three, we looked at the installation of service at my friend Collin’s house. In part four, we’re returning to my neighborhood and documenting the final construction steps before service goes live on my street.

Continue reading

Posted in Uncategorized | Comments Off on Fort Collins Connexion FTTH Construction – Part Four

Build a DMX FeatherWing to Control Lights with a Feather M0

Playing around with the DMX FeatherWing, a Particle Ethernew FeatherWing, an Adafruit Feather M0 Basic Proto, the official Nanoleaf DMX interface, and a Nanoleaf Aurora tile.

Playing around with the DMX FeatherWing, a Particle Ethernet FeatherWing, an Adafruit Feather M0 Basic Proto, the official Nanoleaf DMX interface, and a Nanoleaf Aurora tile. The GUI on the iPad tells the Feather M0 which light program to run. The program output is sent via DMX-512 to the Nanoleaf setup.

This project uses an Adafruit Feather M0 Basic Proto board to control a group of Color Kinetics or other RGB light fixtures using the DMX-512 protocol. We’ll build a DMX-512 interface FeatherWing then connect it to the Feather M0 using a Particle Ethernet FeatherWing. Once the hardware is built and assembled, we’ll write software with a web-based GUI to generate RGB lighting effects and control the attached RGB lights using the DMX protocol. By modifying the software on the Feather M0, different effects can be generated and added to the web-based GUI.

Continue reading

Posted in DMX / Art-Net, Ethernet, Lighting, Microchip, Power over Ethernet (PoE), SAMD21 | Comments Off on Build a DMX FeatherWing to Control Lights with a Feather M0

PoE-Powered RGB LED Floodlight

Philip Color Kinetics ColorBurst 4 10 watt RGB LED flood light controlled and powered over the network.

Philip Color Kinetics ColorBurst 4 10 watt RGB LED flood light controlled and powered over the network.

Time for another PoE project! This project uses a Silvertel 802.3at Ag5300 PoE+ module with a built-in isolated 24 V DC/DC converter to power  a 10 W ColorKinetics ColorBurst 4 RGB LED floodlight. The Ethernet cable and light plug into a small power / control board and PoE+ powers the floodlight and Art-Net UDP packets control the light. If this were a real product, the power / control board would be integrated into the fixture and the Ethernet cable would then plug directly into the back of the light.

Continue reading

Posted in DMX / Art-Net, Ethernet, Lighting, Microchip, PIC18, Power over Ethernet (PoE), RGB LED | Comments Off on PoE-Powered RGB LED Floodlight

Fort Collins Connexion FTTH Construction – Part Three

After four years of hard work, hundreds of hours of volunteer time, and taking on and winning against one of the largest and most powerful corporations in the world, Colin got his Fort Collins Connexion gigabit fiber service installed today! Congratulations, Colin!

After four years of hard work, hundreds of hours of volunteer time, and taking on and winning against one of the largest and most powerful corporations in the world, Colin got his Fort Collins Connexion gigabit fiber service installed today! Congratulations, Colin!

Note: if you missed my first two posts on the Connexion construction process, here are links to part one and part two. Things have been pretty quiet in my neighborhood this past month and a half. The only activity since fiber was pulled in late December has been a few technicians digging around in vaults. In northeast Fort Collins neighborhoods, however, service is going live. Let’s take a closer look at having service installed.

Continue reading

Posted in Uncategorized | Comments Off on Fort Collins Connexion FTTH Construction – Part Three

PoE-Powered VFD Tube Clock

The completed and assembled PoE-powered vintage VFD tube clock.

The completed and assembled PoE-powered vintage VFD tube clock.

This is a vintage VFD tube clock that uses Ethernet for both power and data. The power is provided using 802.3at PoE+ and a Molex PD Jack that contains both integrated magnetics and a PoE Type 2 PD controller. The IP stack runs on a Microchip PIC18F67J60 microcontroller that has an integrated Ethernet MAC and PHY. The IP stack includes DHCP, DNS, NTP, and LLDP functionality.

Continue reading

Posted in Ethernet, Microchip, PIC18, Power over Ethernet (PoE) | Comments Off on PoE-Powered VFD Tube Clock

It’s an Ethernet-Powered Christmas Tree!


The lighted tree in the video above gets both the power and data for its RGB LED pixels using a single Ethernet cable. Power for the pixels is supplied from an Ethernet switch using the 802.3at PoE+ standard. Data for the pixels comes from software running on a PC that generates Art-Net packets at 40 Hz. Each Art-Net packet contains the RGB levels for all the pixels on the tree. Let’s take a closer look at the technical details and how this tree came into existence.

Continue reading

Posted in DMX / Art-Net, Ethernet, Lighting, Microchip, PIC18, Power over Ethernet (PoE), RGB LED | Comments Off on It’s an Ethernet-Powered Christmas Tree!

An Enclosure for the Dalibor Farny R|Z568M Nixie Tube

The finished project.

The finished project.

In the first post in this series, we designed a socket and driver board for a Dalibor Farny R|Z568M Nixie tube. In the the second post in this series, we designed a power supply and controller board for the Nixie tube. In the third and final post in this series, we’re going to design an enclosure to hold both boards and the Nixie tube.

Continue reading

Posted in Uncategorized | Comments Off on An Enclosure for the Dalibor Farny R|Z568M Nixie Tube

A Controller for a Dalibor Farny R|Z568M Nixie Tube

power-data-works

The Nixie tube connected to the socket / driver board and the socket / driver board connected to the upside down power / controller board.

The first in this series of posts described building a socket and driver board for a Dalibor Farny R|Z568M Nixie tube and driving the tube using a power supply and Particle Photon from another Nixie project. This post covers building a power supply and controller board that mounts underneath the socket and driver board to power the Nixie tube and control the displayed digits.

Continue reading

Posted in Uncategorized | Comments Off on A Controller for a Dalibor Farny R|Z568M Nixie Tube